Give IT a Name and He is the suddenly the inventor of toilet paper


Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus.[5] They are generally produced in the process of alpha decay but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabetα. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+ or 4
2
He
2+ indicating a helium ion with a +2 charge (missing its two electrons). Once the ion gains electrons from its environment, the alpha particle becomes a normal (electrically neutral) helium atom 4
2
He
.

Alpha particles have a net spin of zero. When produced in standard alpha radioactive decay, alpha particles generally have a kinetic energy of about 5 MeV and a velocity in the vicinity of 4% of the speed of light. They are a highly ionizing form of particle radiation, with low penetration depth (stopped by a few centimetres of air, or by the skin).

However, so-called long-range alpha particles from ternary fission are three times as energetic and penetrate three times as far. The helium nuclei that form 10–12% of cosmic rays are also usually of much higher energy than those produced by nuclear decay processes, and thus may be highly penetrating and able to traverse the human body and also many metres of dense solid shielding, depending on their energy. To a lesser extent, this is also true of very high-energy helium nuclei produced by particle accelerators.



The nuclear force (or nucleon–nucleon interactionresidual strong force, or, historically, strong nuclear force) is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nuclear force almost identically. Since protons have charge +1 e, they experience an electric force that tends to push them apart, but at short range the attractive nuclear force is strong enough to overcome the electrostatic force. The nuclear force binds nucleons into atomic nuclei.

The nuclear force is powerfully attractive between nucleons at distances of about 0.8 femtometre (fm, or 0.8×10−15 m), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At distances less than 0.7 fm, the nuclear force becomes repulsive. This repulsion is responsible for the size of nuclei, since nucleons can come no closer than the force allows. (The size of an atom, of size in the order of angstroms (Å, or 10−10 m), is five orders of magnitude larger.) The nuclear force is not simple, though, as it depends on the nucleon spins, has a tensor component, and may depend on the relative momentum of the nucleons.[2]

Ionizing radiation (US, ionising radiation in the UK), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them.[1] Some particles can travel up to 99% of the speed of light, and the electromagnetic waves are on the high-energy portion of the electromagnetic spectrum.

Gamma raysX-rays, and the higher energy ultraviolet part of the electromagnetic spectrum are ionizing radiation, whereas the lower energy ultraviolet, visible light, nearly all types of laser light, infraredmicrowaves, and radio waves are non-ionizing radiation. The boundary between ionizing and non-ionizing radiation in the ultraviolet area cannot be sharply defined, as different molecules and atoms ionize at different energies. The energy of ionizing radiation starts between 10 electronvolts (eV) and 33 eV.[citation needed]

Typical ionizing subatomic particles include alpha particlesbeta particles, and neutrons. These are typically created by radioactive decay, and almost all are energetic enough to ionize. There are also secondary cosmic particles produced after cosmic rays interact with Earth's atmosphere, including muonsmesons, and positrons.[2][3] Cosmic rays may also produce radioisotopes on Earth (for example, carbon-14), which in turn decay and emit ionizing radiation. Cosmic rays and the decay of radioactive isotopes are the primary sources of natural ionizing radiation on Earth, contributing to background radiation. Ionizing radiation is also generated artificially by X-ray tubesparticle accelerators, and nuclear fission.

Ionizing radiation is not immediately detectable by human senses, so instruments such as Geiger counters are used to detect and measure it. However, very high energy particles can produce visible effects on both organic and inorganic matter (e.g. water lighting in Cherenkov radiation) or humans (e.g. acute radiation syndrome).[4]

Ionizing radiation is used in a wide variety of fields such as medicinenuclear power, research, and industrial manufacturing, but presents a health hazard if proper measures against excessive exposure are not taken. Exposure to ionizing radiation causes cell damage to living tissue and organ damage. In high acute doses, it will result in radiation burns and radiation sickness, and lower level doses over a protracted time can cause cancer.[5][6] The International Commission on Radiological Protection (ICRP) issues guidance on ionizing radiation protection, and the effects of dose uptake on human health.

gamma ray, also known as gamma radiation (symbol 
γ
), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3×1019 Hz) and wavelengths less than 10 picometers (1×10−11 m), gamma ray photons have the highest photon energy of any form of electromagnetic radiation. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900, he had already named two less penetrating types of decay radiation (discovered by Henri Becquerelalpha rays and beta rays in ascending order of penetrating power.

Gamma rays from radioactive decay are in the energy range from a few kiloelectronvolts (keV) to approximately 8 megaelectronvolts (MeV), corresponding to the typical energy levels in nuclei with reasonably long lifetimes. The energy spectrum of gamma rays can be used to identify the decaying radionuclides using gamma spectroscopyVery-high-energy gamma rays in the 100–1000 teraelectronvolt (TeV) range have been observed from astronomical sources such as the Cygnus X-3 microquasar.

Natural sources of gamma rays originating on Earth are mostly a result of radioactive decay and secondary radiation from atmospheric interactions with cosmic ray particles. However, there are other rare natural sources, such as terrestrial gamma-ray flashes, which produce gamma rays from electron action upon the nucleus. Notable artificial sources of gamma rays include fission, such as that which occurs in nuclear reactors, and high energy physics experiments, such as neutral pion decay and nuclear fusion.

The energy ranges of gamma rays and X-rays overlap in the electromagnetic spectrum, so the terminology for these electromagnetic waves varies between scientific disciplines. In some fields of physics[specify], they are distinguished by their origin: gamma rays are created by nuclear decay while X-rays originate outside the nucleus. In astrophysics, gamma rays are conventionally defined as having photon energies above 100 keV and are the subject of gamma-ray astronomy, while radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy.

Gamma rays are ionizing radiation and are thus hazardous to life. They can cause DNA mutationscancer and tumors, and at high doses burns and radiation sickness. Due to their high penetration power, they can damage bone marrow and internal organs. Unlike alpha and beta rays, they easily pass through the body and thus pose a formidable radiation protection challenge, requiring shielding made from dense materials such as lead or concrete. On Earth, the magnetosphere protects life from most types of lethal cosmic radiation other than gamma rays.


X-rays (X-radiation) are a form of high-energy electromagnetic radiation. In many languages, it is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it in 1895[1] and named it X-radiation to signify an unknown type of radiation.[2]

X-ray wavelengths are shorter than those of ultraviolet rays and longer than those of gamma rays. There is no universally accepted, strict definition of the bounds of the X-ray band. Roughly, X-rays have a wavelength ranging from 10 nanometers to 10 picometers, corresponding to frequencies in the range of 30 petahertz to 30 exahertz (3×1016 Hz to 3×1019 Hz) and photon energies in the range of 100 eV to 100 keV, respectively.

X-rays can penetrate many solid substances such as construction materials and living tissue, so X-ray radiography is widely used in medical diagnostics (e.g., checking for broken bones) and material science (e.g., identification of some chemical elements and detecting weak points in construction materials).[3] However X-rays are ionizing radiation, and exposure to high intensities can be hazardous to health, causing damage to DNA, cancer, and at high dosages, burns and radiation sickness. Their generation and use is strictly controlled by public health authorities.


Ultraviolet (UV) light is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcsCherenkov radiation, and specialized lights, such as mercury-vapor lampstanning lamps, and black lights.

The photons of ultraviolet have greater energy than those of visible light, from about 3.1 to 12 electron volts, around the minimum energy required to ionize atoms. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack sufficient energy, it can induce chemical reactions and cause many substances to glow or fluoresce. Many practical applications, including chemical and biological effects, are derived from the way that UV radiation can interact with organic molecules. These interactions can involve absorption or adjusting energy states in molecules, but do not necessarily involve heating. [citation needed] Short-wave ultraviolet light is ionizing radiation. Consequently, short-wave UV damages DNA and sterilizes surfaces with which it comes into contact.

For humans, suntan and sunburn are familiar effects of exposure of the skin to UV light, along with an increased risk of skin cancer. The amount of UV light produced by the Sun means that the Earth would not be able to sustain life on dry land if most of that light were not filtered out by the atmosphere.[1] More energetic, shorter-wavelength "extreme" UV below 121 nm ionizes air so strongly that it is absorbed before it reaches the ground.[2] However, ultraviolet light (specifically, UVB) is also responsible for the formation of vitamin D in most land vertebrates, including humans.[3] The UV spectrum, thus, has effects both beneficial and detrimental to life.

The lower wavelength limit of the visible spectrum is conventionally taken as 400 nm, so ultraviolet rays are not visible to humans, although people can sometimes perceive light at shorter wavelengths than this.[4] Insects, birds, and some mammals can see near-UV (NUV), i.e., slightly shorter wavelengths than what humans can see.[5]

In physicsradiation is the emission or transmission of energy in the form of waves or particles through space or a material medium.[1][2] This includes:

Radiation is often categorized as either ionizing or non-ionizing depending on the energy of the radiated particles. Ionizing radiation carries more than 10 electron volts (eV), which is enough to ionize atoms and molecules and break chemical bonds. This is an important distinction due to the large difference in harmfulness to living organisms. A common source of ionizing radiation is radioactive materials that emit α, β, or γ radiation, consisting of helium nucleielectrons or positrons, and photons, respectively. Other sources include X-rays from medical radiography examinations and muonsmesons, positrons, neutrons and other particles that constitute the secondary cosmic rays that are produced after primary cosmic rays interact with Earth's atmosphere.

Gamma rays, X-rays, and the higher energy range of ultraviolet light constitute the ionizing part of the electromagnetic spectrum. The word "ionize" refers to the breaking of one or more electrons away from an atom, an action that requires the relatively high energies that these electromagnetic waves supply. Further down the spectrum, the non-ionizing lower energies of the lower ultraviolet spectrum cannot ionize atoms, but can disrupt the inter-atomic bonds that form molecules, thereby breaking down molecules rather than atoms; a good example of this is sunburn caused by long-wavelength solar ultraviolet. The waves of longer wavelength than UV in visible light, infrared, and microwave frequencies cannot break bonds but can cause vibrations in the bonds which are sensed as heat. Radio wavelengths and below generally are not regarded as harmful to biological systems. These are not sharp delineations of the energies; there is some overlap in the effects of specific frequencies.[3]

The word "radiation" arises from the phenomenon of waves radiating (i.e., traveling outward in all directions) from a source. This aspect leads to a system of measurements and physical units that apply to all types of radiation. Because such radiation expands as it passes through space, and as its energy is conserved (in vacuum), the intensity of all types of radiation from a point source follows an inverse-square law in relation to the distance from its source. Like any ideal law, the inverse-square law approximates a measured radiation intensity to the extent that the source approximates a geometric point.

Ionizing radiation

[edit]
Some kinds of ionizing radiation can be detected in a cloud chamber.

Radiation with sufficiently high energy can ionize atoms; that is to say it can knock electrons off atoms, creating ions. Ionization occurs when an electron is stripped (or "knocked out") from an electron shell of the atom, which leaves the atom with a net positive charge. Because living cells and, more importantly, the DNA in those cells can be damaged by this ionization, exposure to ionizing radiation increases the risk of cancer. Thus "ionizing radiation" is somewhat artificially separated from particle radiation and electromagnetic radiation, simply due to its great potential for biological damage. While an individual cell is made of trillions of atoms, only a small fraction of those will be ionized at low to moderate radiation powers. The probability of ionizing radiation causing cancer is dependent upon the absorbed dose of the radiation and is a function of the damaging tendency of the type of radiation (equivalent dose) and the sensitivity of the irradiated organism or tissue (effective dose).

If the source of the ionizing radiation is a radioactive material or a nuclear process such as fission or fusion, there is particle radiation to consider. Particle radiation is subatomic particles accelerated to relativistic speeds by nuclear reactions. Because of their momenta, they are quite capable of knocking out electrons and ionizing materials, but since most have an electrical charge, they do not have the penetrating power of ionizing radiation. The exception is neutron particles; see below. There are several different kinds of these particles, but the majority are alpha particlesbeta particlesneutrons, and protons. Roughly speaking, photons and particles with energies above about 10 electron volts (eV) are ionizing (some authorities use 33 eV, the ionization energy for water). Particle radiation from radioactive material or cosmic rays almost invariably carries enough energy to be ionizing.

Most ionizing radiation originates from radioactive materials and space (cosmic rays), and as such is naturally present in the environment, since most rocks and soil have small concentrations of radioactive materials. Since this radiation is invisible and not directly detectable by human senses, instruments such as Geiger counters are usually required to detect its presence. In some cases, it may lead to secondary emission of visible light upon its interaction with matter, as in the case of Cherenkov radiation and radio-luminescence.

Graphic showing relationships between radioactivity and detected ionizing radiation

Ionizing radiation has many practical uses in medicine, research, and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure, and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131.[4] However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood, and currently estimates are loosely determined by population-based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."[5]

Ultraviolet radiation

[edit]

Ultraviolet, of wavelengths from 10 nm to 125 nm, ionizes air molecules, causing it to be strongly absorbed by air and by ozone (O3) in particular. Ionizing UV therefore does not penetrate Earth's atmosphere to a significant degree, and is sometimes referred to as vacuum ultraviolet. Although present in space, this part of the UVA spectrum is not of biological importance, because it does not reach living organisms on Earth.

There is a zone of the atmosphere in which ozone absorbs some 98% of non-ionizing but dangerous UV-C and UV-B. This ozone layer starts at about 20 miles (32 km) and extends upward. Some of the ultraviolet spectrum that does reach the ground is non-ionizing, but is still biologically hazardous due to the ability of single photons of this energy to cause electronic excitation in biological molecules, and thus damage them by means of unwanted reactions. An example is the formation of pyrimidine dimers in DNA, which begins at wavelengths below 365 nm (3.4 eV), which is well below ionization energy. This property gives the ultraviolet spectrum some of the dangers of ionizing radiation in biological systems without actual ionization occurring. In contrast, visible light and longer-wavelength electromagnetic radiation, such as infrared, microwaves, and radio waves, consists of photons with too little energy to cause damaging molecular excitation, and thus this radiation is far less hazardous per unit of energy.

X-rays

[edit]

X-rays are electromagnetic waves with a wavelength less than about 10−9 m (greater than 3x1017 Hz and 1,240 eV). A smaller wavelength corresponds to a higher energy according to the equation E=h c/λ. ("E" is Energy; "h" is Planck's constant; "c" is the speed of light; "λ" is wavelength.) When an X-ray photon collides with an atom, the atom may absorb the energy of the photon and boost an electron to a higher orbital level or if the photon is extremely energetic, it may knock an electron from the atom altogether, causing the atom to ionize. Generally, larger atoms are more likely to absorb an X-ray photon since they have greater energy differences between orbital electrons. The soft tissue in the human body is composed of smaller atoms than the calcium atoms that make up bone, so there is a contrast in the absorption of X-rays. X-ray machines are specifically designed to take advantage of the absorption difference between bone and soft tissue, allowing physicians to examine structure in the human body.

X-rays are also totally absorbed by the thickness of the earth's atmosphere, resulting in the prevention of the X-ray output of the sun, smaller in quantity than that of UV but nonetheless powerful, from reaching the surface.

Gamma radiation

[edit]
Gamma radiation detected in an isopropanol cloud chamber.

Gamma (γ) radiation consists of photons with a wavelength less than 3x10−11 meters (greater than 1019 Hz and 41.4 keV).[4] Gamma radiation emission is a nuclear process that occurs to rid an unstable nucleus of excess energy after most nuclear reactions. Both alpha and beta particles have an electric charge and mass, and thus are quite likely to interact with other atoms in their path. Gamma radiation, however, is composed of photons, which have neither mass nor electric charge and, as a result, penetrates much further through matter than either alpha or beta radiation.

Gamma rays can be stopped by a sufficiently thick or dense layer of material, where the stopping power of the material per given area depends mostly (but not entirely) on the total mass along the path of the radiation, regardless of whether the material is of high or low density. However, as is the case with X-rays, materials with a high atomic number such as lead or depleted uranium add a modest (typically 20% to 30%) amount of stopping power over an equal mass of less dense and lower atomic weight materials (such as water or concrete). The atmosphere absorbs all gamma rays approaching Earth from space. Even air is capable of absorbing gamma rays, halving the energy of such waves by passing through, on the average, 500 ft (150 m).

Alpha radiation

[edit]
Alpha particle detected in an isopropanol cloud chamber

Alpha particles are helium-4 nuclei (two protons and two neutrons). They interact with matter strongly due to their charges and combined mass, and at their usual velocities only penetrate a few centimeters of air, or a few millimeters of low density material (such as the thin mica material which is specially placed in some Geiger counter tubes to allow alpha particles in). This means that alpha particles from ordinary alpha decay do not penetrate the outer layers of dead skin cells and cause no damage to the live tissues below. Some very high energy alpha particles compose about 10% of cosmic rays, and these are capable of penetrating the body and even thin metal plates. However, they are of danger only to astronauts, since they are deflected by the Earth's magnetic field and then stopped by its atmosphere.

Alpha radiation is dangerous when alpha-emitting radioisotopes are ingested or inhaled (breathed or swallowed). This brings the radioisotope close enough to sensitive live tissue for the alpha radiation to damage cells. Per unit of energy, alpha particles are at least 20 times more effective at cell-damage as gamma rays and X-rays. See relative biological effectiveness for a discussion of this. Examples of highly poisonous alpha-emitters are all isotopes of radiumradon, and polonium, due to the amount of decay that occur in these short half-life materials.

Beta radiation

[edit]
Electrons (beta radiation) detected in an isopropanol cloud chamber

Beta-minus (β) radiation consists of an energetic electron. It is more penetrating than alpha radiation but less than gamma. Beta radiation from radioactive decay can be stopped with a few centimeters of plastic or a few millimeters of metal. It occurs when a neutron decays into a proton in a nucleus, releasing the beta particle and an antineutrino. Beta radiation from linac accelerators is far more energetic and penetrating than natural beta radiation. It is sometimes used therapeutically in radiotherapy to treat superficial tumors.

Beta-plus (β+) radiation is the emission of positrons, which are the antimatter form of electrons. When a positron slows to speeds similar to those of electrons in the material, the positron will annihilate an electron, releasing two gamma photons of 511 keV in the process. Those two gamma photons will be traveling in (approximately) opposite direction. The gamma radiation from positron annihilation consists of high energy photons, and is also ionizing.

The nuclear force (or nucleon–nucleon interactionresidual strong force, or, historically, strong nuclear force) is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nuclear force almost identically. Since protons have charge +1 e, they experience an electric force that tends to push them apart, but at short range the attractive nuclear force is strong enough to overcome the electrostatic force. The nuclear force binds nucleons into atomic nuclei.

The nuclear force is powerfully attractive between nucleons at distances of about 0.8 femtometre (fm, or 0.8×10−15 m), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At distances less than 0.7 fm, the nuclear force becomes repulsive. This repulsion is responsible for the size of nuclei, since nucleons can come no closer than the force allows. (The size of an atom, of size in the order of angstroms (Å, or 10−10 m), is five orders of magnitude larger.) The nuclear force is not simple, though, as it depends on the nucleon spins, has a tensor component, and may depend on the relative momentum of the nucleons.[2]

The nuclear force has an essential role in storing energy that is used in nuclear power and nuclear weaponsWork (energy) is required to bring charged protons together against their electric repulsion. This energy is stored when the protons and neutrons are bound together by the nuclear force to form a nucleus. The mass of a nucleus is less than the sum total of the individual masses of the protons and neutrons. The difference in masses is known as the mass defect, which can be expressed as an energy equivalent. Energy is released when a heavy nucleus breaks apart into two or more lighter nuclei. This energy is the internucleon potential energy that is released when the nuclear force no longer holds the charged nuclear fragments together.[3][4]

A quantitative description of the nuclear force relies on equations that are partly empirical. These equations model the internucleon potential energies, or potentials. (Generally, forces within a system of particles can be more simply modelled by describing the system's potential energy; the negative gradient of a potential is equal to the vector force.) The constants for the equations are phenomenological, that is, determined by fitting the equations to experimental data. The internucleon potentials attempt to describe the properties of nucleon–nucleon interaction. Once determined, any given potential can be used in, e.g., the Schrödinger equation to determine the quantum mechanical properties of the nucleon system.

The discovery of the neutron in 1932 revealed that atomic nuclei were made of protons and neutrons, held together by an attractive force. By 1935 the nuclear force was conceived to be transmitted by particles called mesons. This theoretical development included a description of the Yukawa potential, an early example of a nuclear potential. Pions, fulfilling the prediction, were discovered experimentally in 1947. By the 1970s, the quark model had been developed, by which the mesons and nucleons were viewed as composed of quarks and gluons. By this new model, the nuclear force, resulting from the exchange of mesons between neighbouring nucleons, is a multiparticle interaction, the collective effect of strong force on the underlining structure of the nucleons.

In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle, they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.

In principle, a reaction can involve more than two particles colliding, but because the probability of three or more nuclei to meet at the same time at the same place is much less than for two nuclei, such an event is exceptionally rare (see triple alpha process for an example very close to a three-body nuclear reaction). The term "nuclear reaction" may refer either to a change in a nuclide induced by collision with another particle or to a spontaneous change of a nuclide without collision.

Natural nuclear reactions occur in the interaction between cosmic rays and matter, and nuclear reactions can be employed artificially to obtain nuclear energy, at an adjustable rate, on-demand. Nuclear chain reactions in fissionable materials produce induced nuclear fission. Various nuclear fusion reactions of light elements power the energy production of the Sun and stars.


Comments